Abstract
ABSTRACT Eighty percent of big data are associated with spatial information, and thus are Big Spatial Data (BSD). BSD provides new and great opportunities to rework problems in urban and environmental sustainability with advanced BSD analytics. To fully leverage the advantages of BSD, it is integrated with conventional data (e.g. remote sensing images) and improved methods are developed. This paper introduces four case studies: (1) Detection of polycentric urban structures; (2) Evaluation of urban vibrancy; (3) Estimation of population exposure to PM2.5; and (4) Urban land-use classification via deep learning. The results provide evidence that integrated methods can harness the advantages of both traditional data and BSD. Meanwhile, they can also improve the effectiveness of big data itself. Finally, this study makes three key recommendations for the development of BSD with regards to data fusion, data and predicting analytics, and theoretical modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.