Abstract

The epilimnion of hypersaline, alkaline, meromictic Big Soda Lake contains an average 58 mmol sulfate liter−1 and 0.4 µmol dissolved iron liter−1. The monimolimnion, which is permanently anoxic, has a sulfide concentration ranging seasonally from 4 to 7 mmol liter−1. Depth profiles of sulfate reduction in the monimolimnion, assayed with a 35S tracer technique and in situ incubations, demonstrated that sulfate reduction occurs within the water column of this extreme environment. The average rate of reduction in the monimolimnion was 3 µmol sulfate liter−1 d−1 in May compared to 0.9 in October. These values are comparable to rates of sulfate reduction reported for anoxic waters of more moderate environments. Sulfate reduction also occurred in the anoxic zone of the mixolimnion, though at significantly lower rates (0.025–0.090 µmol liter−1 d−1 at 25 m). Additions of FeS (1.0 mmol liter−1) doubled the endogenous rate of sulfate reduction in the monimolimnion, while MnS and kaolinite had no effect. These results suggest that sulfate reduction in Big Soda Lake is iron limited and controlled by seasonal variables other than temperature. Estimates of the organic carbon mineralized by sulfate reduction exceed measured fluxes of particulate organic carbon sinking from the mixolimnion. Thus, additional sources of electron donors (other than those derived from the sinking of pelagic autotrophs) may also fuel monimolimnetic sulfate reduction in the lake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.