Abstract

Water availability in the germination stage of plants is crucial for seed germination and as a resource for developing seedlings. The effect of osmotic potential on percent germination and time to germination for big sacaton (Sporobolus wrightii Munro) and Arizona fescue (Festuca arizonica Vasey) was investigated. We predicted that seeds native to semi-arid environments would germinate at osmotic potentials less negative than about -1.5 MPa, the permanent wilting point (PWP) of many agronomic grasses. In addition, the systemic, asexual endophyte Neotyphodium is transmitted through the seed in Arizona fescue and is thought to increase germination of its host. Therefore, we also tested for an effect of the endophyte on germination and time to germination of Arizona fescue under varying osmotic potentials. To test for minimum osmotic potential supporting germination, big sacaton and Arizona fescue seeds were placed on acetate membranes in contact with PEG solutions of varying osmotic potentials for 2 weeks. Both grasses germinated at 50% of maximum germination (at soil saturation) at and below the standard PWP (-1.5 Mpa). Big sacaton and Arizona fescue germinated at 64% and 60% at -1.5 MPa, respectively, and Arizona fescue germinated at 35% at -1.8 MPa (70% was the maximum at saturation). The presence of the Neotyphodium endophyte did not affect percent or time to germination of Arizona fescue at any of the osmotic potentials tested. DOI:10.2458/azu_jrm_v56i6_neil

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call