Abstract
The term Big Data has been recently used to define big, highly varied, complex data sets, which are created and updated at a high speed and require faster processing, namely, a reduced time to filter and analyse relevant data. These data is also increasingly becoming Open Data (data that can be freely distributed) made public by the government, agencies, private enterprises and among others. There are at least two issues that can obstruct the availability and use of Open Big Datasets: Firstly, the gathering and geoprocessing of these datasets are very computationally intensive; hence, it is necessary to integrate high-performance solutions, preferably internet based, to achieve the goals. Secondly, the problems of heterogeneity and inconsistency in geospatial data are well known and affect the data integration process, but is particularly problematic for Big Geo Data. Therefore, Big Geo Data integration will be one of the most challenging issues to solve. With these applications, we demonstrate that is possible to provide processed Big Geo Data to common users, using open geospatial standards and technologies. NoSQL databases like MongoDB and frameworks like RASDAMAN could offer different functionalities that facilitate working with larger volumes and more heterogeneous geospatial data sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.