Abstract
We propose an efficient method for the high dimensional data regression. To this end, we use a least mean squares (LMS) filter followed by a recursive least squares (RLS) filter and combine them via boosting notion extensively used in machine learning literature. Moreover, we provide a novel approach where the RLS filter is updated randomly in order to reduce the computational complexity while not giving up more on the performance. In the proposed algorithm, after the LMS filter produces an estimate, depending on the error made on this step, the algorithm decides whether or not updating the RLS filter. Since we avoid updating the RLS filter for all data sequence, the computational complexity is significantly reduced. Error performance and the computation time of our algorithm is demonstrated for a highly realistic scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.