Abstract

Falling oil revenues and rapid urbanization are putting a strain on the budgets of oil-producing nations, which often subsidize domestic fuel consumption. A direct way to decrease the impact of subsidies is to reduce fuel consumption by reducing congestion and car trips. As fuel consumption models have started to incorporate data sources from ubiquitous sensing devices, the opportunity is to develop comprehensive models at urban scale leveraging sources such as Global Positioning System (GPS) data and Call Detail Records. This paper combines these big data sets in a novel method to model fuel consumption within a city and estimate how it may change in different scenarios. To do so a fuel consumption model was calibrated for use on any car fleet fuel economy distribution and applied in Riyadh, Saudi Arabia. The model proposed, based on speed profiles, was then used to test the effects on fuel consumption of reducing flow, both randomly and by targeting the most fuel-inefficient trips in the city. The estimates considerably improve baseline methods based on average speeds, showing the benefits of the information added by the GPS data fusion. The presented method can be adapted to also measure emissions. The results constitute a clear application of data analysis tools to help decision makers compare policies aimed at achieving economic and environmental goals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.