Abstract

Multiple recent studies have focused on unraveling the content of the medicinal chemist's toolbox. Here, we present an investigation of chemical reactions and molecules retrieved from U.S. patents over the past 40 years (1976-2015). We used a sophisticated text-mining pipeline to extract 1.15 million unique whole reaction schemes, including reaction roles and yields, from pharmaceutical patents. The reactions were assigned to well-known reaction types such as Wittig olefination or Buchwald-Hartwig amination using an expert system. Analyzing the evolution of reaction types over time, we observe the previously reported bias toward reaction classes like amide bond formations or Suzuki couplings. Our study also shows a steady increase in the number of different reaction types used in pharmaceutical patents but a trend toward lower median yield for some of the reaction classes. Finally, we found that today's typical product molecule is larger, more hydrophobic, and more rigid than 40 years ago.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.