Abstract
Healthcare systems generate bytes and bytes of data and the data growth is exponential. The voluminous data can be analysed effectively, only when the data organization is efficient. Additionally, data retrieval must also be made simpler, such that the healthcare professional can compare and contrast the test sample with the database of health records. This makes it possible to achieve better disease prediction and this work presents a big data based disease prediction system with the help of supervised learning. The proposed approach clusters the related health records, based on every medical attribute followed by which the disease is predicted by SVM classifier. The performance of the proposed disease prediction system is observed to be satisfactory in terms of accuracy, precision, recall, F-measure, while consuming reasonable period of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.