Abstract

The coronavirus disease 2019 (COVID-19) has developed into a pandemic. Data-driven techniques can be used to inform and guide public health decision- and policy-makers. In generalizing the spread of a virus over a large area, such as a province, it must be assumed that the transmission occurs as a stochastic process. It is therefore very difficult for policy and decision makers to understand and visualize the location specific dynamics of the virus on a more granular level. A primary concern is exposing local virus hot-spots, in order to inform and implement non-pharmaceutical interventions. A hot-spot is defined as an area experiencing exponential growth relative to the generalised growth of the pandemic. This paper uses the first and second waves of the COVID-19 epidemic in Gauteng Province, South Africa, as a case study. The study aims provide a data-driven methodology and comprehensive case study to expose location specific virus dynamics within a given area. The methodology uses an unsupervised Gaussian Mixture model to cluster cases at a desired granularity. This is combined with an epidemiological analysis to quantify each cluster’s severity, progression and whether it can be defined as a hot-spot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.