Abstract

PurposeDemand forecasting is a challenging task that could benefit from additional relevant data and processes. The purpose of this paper is to examine how big data analytics (BDA) enhances forecasts’ accuracy.Design/methodology/approachA conceptual structure based on the design-science paradigm is applied to create categories for BDA. Existing approaches from the scientific literature are synthesized with industry knowledge through experience and intuition. Accordingly, a reference frame is developed using three steps: description of conceptual elements utilizing justificatory knowledge, specification of principles to explain the interplay between elements, and creation of a matching by conducting investigations within the retail industry.FindingsThe developed framework could serve as a guide for meaningful BDA initiatives in the supply chain. The paper illustrates that integration of different data sources in demand forecasting is feasible but requires data scientists to perform the job, an appropriate technological foundation, and technology investments.Originality/valueSo far, no scientific work has analyzed the relation of forecasting methods to BDA; previous works have described technologies, types of analytics, and forecasting methods separately. This paper, in contrast, combines insights and provides advice on how enterprises can employ BDA in their operational, tactical, or strategic demand plans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.