Abstract
Advancements in high-throughput technologies, genomics, transcriptomics, and metabolomics play an important role in obtaining biological information about living organisms. The field of computational biology and bioinformatics has experienced significant growth with the advent of high-throughput sequencing technologies and other high-throughput techniques. The resulting large amounts of data present both opportunities and challenges for data analysis. Big data analysis has become essential for extracting meaningful insights from the massive amount of data. In this chapter, we provide an overview of the current status of big data analysis in computational biology and bioinformatics. We discuss the various aspects of big data analysis, including data acquisition, storage, processing, and analysis. We also highlight some of the challenges and opportunities of big data analysis in this area of research. Despite the challenges, big data analysis presents significant opportunities like development of efficient and fast computing algorithms for advancing our understanding of biological processes, identifying novel biomarkers for breeding research and developments, predicting disease, and identifying potential drug targets for drug development programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.