Abstract
Big bang nucleosynthesis (BBN), an epoch of primordial nuclear transformations in the expanding universe, has left an observable imprint in the abundances of light elements. Precision observations of such abundances, combined with high-accuracy predictions, provide a nontrivial test of the hot big bang and probe nonstandard cosmological and particle physics scenarios. We give an overview of BBN sensitivity to different classes of new physics: new particle or field degrees of freedom, time-varying couplings, decaying or annihilating massive particles leading to nonthermal processes, and catalysis of BBN by charged relics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.