Abstract

This article discusses the one-prey, one-predator, and the super predator model with different types of functional response. The rate of prey consumption by the predator follows Holling type I functional response and the rate of predator consumption by the super predator follows Holling type II functional response. We identify the existence and stability of critical points and obtain that the extinction of all population points is always unstable, and the other two are conditionally stable i.e., the super predator extinction point and the co-existence point. Furthermore, we give the numerical simulations to describe the bifurcation diagram and phase portraits of the model. The bifurcation diagram is obtained by varying the parameter of the conversion rate of predator biomass into a new super-predator which gives forward and Hopf bifurcation. The forward bifurcation occurs around the super predator extinction point while Hopf bifurcation occurs around the interior of the model. Based on the terms of existence and numerical simulation, we confirm that the conversion rate of predator biomass into a new super-predator controls the dynamics of the system and maintains the existence of predator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.