Abstract
Current studies in neurophysiology award a key role to collective behaviors in both neural information and image processing. This fact suggests to exploit phase locking and frequency entrainment in oscillatory neural networks for computational purposes. In the practical implementation of artificial neural networks delays are always present due to the non-null processing time and the finite signal propagation speed. This manuscript deals with networks composed by delayed oscillators, we show that either long delays or constant external inputs can elicit oscillatory behavior in the single neural oscillator. Using center manifold reduction and normal form theory, the equations governing the whole network dynamics are reduced to an amplitude-phase model (i.e. equations describing the evolution of both the amplitudes and the phases of the oscillators). The analysis of a network with a simple architecture reveals that different kind of phase locked oscillations are admissible, and the possible coexistence of in-phase and anti-phase locked solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.