Abstract

The traveling wave solutions of the magma equation are studied by using the approach of dynamical systems and the theory of bifurcations. With the aid of Maple, all bifurcations and phase portraits in the parametric space are obtained. Under different regions of parametric space, various sufficient conditions to guarantee the existence of solitary wave, periodic wave and breaking wave solutions are given. Moreover, the reason for appearance of breaking waves is explained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.