Abstract
Four large classes of nonlinear wave equations are studied, and the existence of solitary wave, kink and anti-kink wave, and uncountably many periodic wave solutions is proved. The analysis is based on the bifurcation theory of dynamical systems. Under some parametric conditions, various sufficient conditions for the existence of the aforementioned wave solutions are derived. Moreover, all possible exact parametric representations of solitary wave, kink and anti-kink wave, and periodic wave solutions are obtained and classified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.