Abstract

A turbulent transonic flow past two symmetric airfoils with flat midparts is studied numerically. Using the Reynolds-averaged Navier-Stokes equations, we analyze the flow past a 9% thick airfoil with an elliptic nose. A range of the free-stream Mach number M∞, in which flow bifurcations occur, is determined. Values of M∞that give rise to significant changes in the lift coefficient with variations of the angle of attack are specified. Flow bifurcations are also revealed for a thin double wedge, i.e., a sort of a hexagon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.