Abstract
In this paper, a Z 3-equivariant quartic planar vector field is studied. The Hopf bifurcation method and polycycle bifurcation method are combined to study the limit cycles bifurcated from the polycycle with three hyperbolic saddle points. It is found that this special quartic planar polynomial system has at least three large limit cycles which surround 13 singular points. By applying the double homoclinic loops bifurcation method and Poincaré–Bendixson theorem, we conclude that 16 limit cycles with two different configurations exist in this special planar polynomial system. The results acquired in this paper are useful to the study of the second part of 16th Hilbert Problem.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.