Abstract

In this paper, we consider a simple equation which involves a parameter [Formula: see text], and its traveling wave system has a singular line. Firstly, using the qualitative theory of differential equations and the bifurcation method for dynamical systems, we show the existence and bifurcations of peak-solitary waves and valley-solitary waves. Specially, we discover the following novel properties: (i) In the traveling wave system, there exist infinitely many periodic orbits intersecting at a point, or two points and passing through the singular line, and there is no singular point inside a homoclinic orbit. (ii) When [Formula: see text], in the equation there exist three types of bifurcations of valley-solitary waves including periodic wave, blow-up wave and double solitary wave. (iii) When [Formula: see text], in the equation there exist two types of bifurcations of valley-solitary wave including periodic wave and blow-up wave, but there is no double solitary wave bifurcation. Secondly, we perform numerical simulations to visualize the above properties. Finally, when [Formula: see text] and the constant wave speed equals [Formula: see text], we give exact expressions to the above phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.