Abstract
We consider perturbations of integrable Hamiltonian systems in the neighbourhood of normally parabolic invariant tori. Under appropriate transversality conditions the tori in the unperturbed system bifurcate according to a (generalized) cuspoid catastrophe. Combining techniques of KAM theory and singularity theory, we show that such bifurcation scenarios survive the perturbation on large Cantor sets. Applications to rigid body dynamics and forced oscillators are pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.