Abstract

We present some recent developments of the fuzzy generalized cell mapping method (FGCM) in this paper. The topological property of the FGCM and its finite convergence of membership distribution vector are discussed. Powerful algorithms of digraphs are adopted for the analysis of topological properties of the FGCM systems. Bifurcations of fuzzy nonlinear dynamical systems are studied by using the FGCM method. A backward algorithm is introduced to study the unstable equilibrium solutions and their bifurcation. We have found that near the deterministic bifurcation point, the fuzzy system undergoes a complex transition as the control parameter varies. In this transition region, the steady state membership distribution is dependent on the initial condition. If we use the measure and topology of the α-cut (α=1) of the steady state membership function of the persistent group representing the stable fuzzy equilibrium solution to characterize the fuzzy bifurcation, assuming the uniform initial condition within the persistent group, the bifurcation of the fuzzy dynamical system is then completed within an interval of the control parameter, rather than at a point as is the case of deterministic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.