Abstract

Motivated by observations of snap-through phenomena in buckled elastic strips subject to clamping and lateral end translations, we experimentally explore the multi-stability and bifurcations of thin bands of various widths and compare these results with numerical continuation of a perfectly anisotropic Kirchhoff rod. Our choice of boundary conditions is not easily satisfied by the anisotropic structures, forcing a cooperation between bending and twisting deformations. We find that, despite clear physical differences between rods and strips, a naive Kirchhoff model works surprisingly well as an organizing framework for the experimental observations. In the context of this model, we observe that anisotropy creates new states and alters the connectivity between existing states. Our results are a preliminary look at relatively unstudied boundary conditions for rods and strips that may arise in a variety of engineering applications, and may guide the avoidance of jump phenomena in such settings. We also briefly comment on the limitations of current strip models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call