Abstract

The objective of this paper is to study the dynamical properties of a Holling-type II predator–prey system with constant rate harvesting. It is shown that the model has at most three equilibria in the first quadrant and can exhibit numerous kinds of bifurcation phenomena, including the saddle-node bifurcation, the degenerate Bogdanov–Takens bifurcation of codimension 3, the supercritical and subcritical Hopf bifurcation, the generalized Hopf bifurcation. These results reveal far richer dynamics than that of the model with no harvesting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.