Abstract
This article investigates the parameter space of the exponential family $z\mapsto \exp(z)+\kappa$. We prove that the boundary (in $\C$) of every hyperbolic component is a Jordan arc, as conjectured by Eremenko and Lyubich as well as Baker and Rippon. In fact, we prove the stronger statement that the exponential bifurcation locus is connected in $\C$, which is an analog of Douady and Hubbard's celebrated theorem that the Mandelbrot set is connected. We show furthermore that $\infty$ is not accessible through any nonhyperbolic ("queer") stable component. The main part of the argument consists of demonstrating a general "Squeezing Lemma", which controls the structure of parameter space near infinity. We also prove a second conjecture of Eremenko and Lyubich concerning bifurcation trees of hyperbolic components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.