Abstract
The dynamics of globally coupled map lattices can be described in terms of a nonlinear Frobenius-Perron equation in the limit of large system size. This approach allows for an analytical computation of stationary states and their stability. The bifurcation behavior of coupled tent maps near the chaotic band merging point is presented. Furthermore, the time-independent states of coupled logistic equations are analyzed. The bifurcation diagram of the uncoupled map carries over to the map lattice. The analytical results are supplemented with numerical simulations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.