Abstract

The birhythmic oscillation is of great significance in biology and engineering, and this paper presents a bifurcation analysis in a time-delayed birhythmic oscillator containing fractional derivative and Lévy noise. The numerical method is used to explore the influence of various parameters on the bifurcation of the birhythmic system, and the role of fractional derivative and Lévy noise in inducing or inhibiting birhythmicity in a time-delayed birhythmic biological system is examined in this work. First, we use a numerical method to calculate the fractional derivative, which has a fast calculation speed. Then the McCulloch algorithm is employed to generate Lévy random numbers. Finally, the stationary probability density function graph of the amplitude is obtained by Monte Carlo simulation. The results show that the fractional damping and Lévy noise can effectively control the characteristics of the birhythmic oscillator, and the change of the parameters (except the skewness parameter) can cause the system bifurcation. In addition, this article further discusses the interaction of fractional derivative and time delay in a birhythmic system with Lévy noise, proving that adjusting parameters of time delay can lead to abundant bifurcations. Our research may help to further explore the bifurcation phenomenon of birhythmic biological system, and has a practical significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.