Abstract

The paper addresses the problem of bifurcation of periodic solutions from a normally nondegenerate family of periodic solutions of ordinary differential equations under perturbations. The approach to solve this problem can be described as transforming (by a Lyapunov–Schmidt reduction) the initial system into one which is in the standard form of averaging, and subsequently applying the averaging principle. This approach encounters a fundamental problem when the perturbation is only Lipschitz (nonsmooth) as we do not longer have smooth Lyapunov–Schmidt projectors. The situation of Lipschitz perturbations has been addressed in the literature lately and the results obtained conclude the existence of the bifurcated branch of periodic solutions. Motivated by recent challenges in control theory, we are interested in the uniqueness problem. We achieve this in the case when the Lipschitz constant of the perturbation obeys a suitable estimate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.