Abstract

We consider a parametrically forced pendulum with a vertically oscillating suspension point. It is well known that, as the amplitude of the vertical oscillation is increased, its inverted state (corresponding to the vertically-up configuration) undergoes a cascade of ``resurrections,'' i.e., it becomes stabilized after its instability, destabilize again, and so forth ad infinitum. We make a detailed numerical investigation of the bifurcations associated with such resurrections of the inverted pendulum by varying the amplitude and frequency of the vertical oscillation. It is found that the inverted state stabilizes via alternating ``reverse'' subcritical pitchfork and period-doubling bifurcations, while it destabilizes via alternating ``normal'' supercritical period-doubling and pitchfork bifrucations. An infinite sequence of period-doubling bifurcations, leading to chaos, follows each destabilization of the inverted state. The critical behaviors in the period-doubling cascades are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.