Abstract

In this paper a modified May-Holling-Tanner predator-prey model is analyzed, considering an alternative food for predators, when the quantity of prey i scarce. Our obtained results not only extend but also complement existing ones for this model, achieved in previous articles. The model presents rich dynamics for different sets of the parameter values; it is possible to prove the existence of: (i) a separatrix curve on the phase plane dividing the behavior of the trajectories, which can have different ω-limit; this implies that solutions nearest to that separatrix are highly sensitive to initial conditions, (ii) a homoclinic curve generated by the stable and unstable manifolds of a saddle point in the interior of the first quadrant, whose break generates a non-infinitesimal limit cycle, (iii) different kinds of bifurcations, such as: saddle-node, Hopf, Bogdanov-Takens, homoclinic and multiple Hopf bifurcations. (iv) up to two limit cycles surrounding a positive equilibrium point, which is locally asymptotically stable. Thus, the phenomenon of tri-stability can exist, since simultaneously can coexist a stable limit cycle, joint with two locally asymptotically stable equilibrium points, one of them over the y-axis and the other positive singularity. Numerical simulations supporting the main mathematical outcomes are shown and some of their ecological meanings are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call