Abstract

Many biological populations breed seasonally and have nonoverlapping generations, so that their dynamics are described by first-order difference equations, Nt+1 = F (Nt). In many cases, F(N) as a function of N will have a hump. We show, very generally, that as such a hump steepens, the dynamics goes from a stable point, to a bifurcating hierarchy of stable cycles of period 2n, into a region of chaotic behavior where the population exhibits an apparently random sequence of "outbreaks" followed by "crashes." We give a detailed account of the underlying mathematics of this process and review other situations (in two- and higher dimensional systems, or in differential equation systems) where apparently random dynamics can arise from bifurcation processes. This complicated behavior, in simple deterministic models, can have disturbing implications for the analysis and interpretation of biological data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.