Abstract

Nonlinear dynamical systems with irrational and fractional nonlinear restoring forces often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational and fractional nonlinear restoring forces avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. By introducing a particular dimensionless representation and a series of transformations, the two-degree-of-freedom system can be transformed into a perturbed Hamiltonian system. The extended Melnikov method is directly used to detect the chaotic threshold of the perturbed system theoretically, which overcomes the barrier caused by solving theoretical solution for the homoclinic orbit of the unperturbed system. The numerical simulations are carried out to demonstrate the complicated dynamics of the nonlinear spring-pendulum system, which show the efficiency of the criteria for chaotic motion in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.