Abstract
Bifurcations and chaotic motions of a class of mechanical system subjected to a superharmonic parametric excitation or a nonlinear periodic parametric excitation are studied, respectively, in this paper. Chaos arising from the transverse intersections of the stable and unstable manifolds of the homoclinic and heteroclincic orbits is analyzed by Melnikov's method. The critical curves separating the chaotic and nonchaotic regions are plotted. Chaotic dynamics are compared for these systems with a periodic parametric excitation or a superharmonic parametric excitation, or a nonlinear periodic parametric excitation. Especially, some new dynamical phenomena are presented for the system with a nonlinear periodic parametric excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.