Abstract

The behavior of single-degree-of-freedom systems possessing quadratic and cubic nonlinearities subject to parametric excitation is investigated. Both fundamental and principal parametric resonances are considered. A global bifurcation diagram in the excitation amplitude and excitation frequency domain is presented showing different possible stable steady-state solutions (attractors). Fractal basin maps for fundamental and principal parametric resonances when three attractors coexist are presented in color. An enlargement of one region of the map for principal parametric resonance reveals a Cantor-like set of fractal boundaries. For some cases, both periodic and chaotic attractors coexist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.