Abstract

A tutorial introduction in bifurcation theory is given, and the applicability of this theory to study nonlinear dynamical phenomena in a power system network is explored. The predicted behavior is verified through time simulation. Systematic application of the theory revealed the existence of stable and unstable periodic solutions as well as voltage collapse. A particular response depends on the value of the parameter under consideration. It is shown that voltage collapse is a subset of the overall bifurcation phenomena that a system may experience under the influence of system parameters. A low-dimensional center manifold reduction is applied to capture the relevant dynamics involved in the voltage collapse process. The need for the consideration of nonlinearity, especially when the system is highly stressed, is emphasized. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.