Abstract

Bifurcation for prescribed mean curvature equations in one dimension has been intensively investigated in recent years, and a striking phenomenon discovered is that the length of the interval may affect the shapes of bifurcation curves. However, to our best knowledge, no such results are known in higher dimensions. In this paper, we study a class of prescribed mean curvature equations in bounded domains of RN with general nonlinearities f satisfying f(0)=0 and f′(0)>0. We establish some formulas for directions of bifurcation at simple eigenvalues, which lead to a sufficient and necessary condition to ensure that the directions depend on the size of the domain. In contrast, this phenomenon does not occur for the semilinear case. Some interesting examples, including logistic and perturbed exponential nonlinearities, are also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.