Abstract

This paper studies a diffusive Holling–Tanner predator–prey system with stoichiometric density dependence. The local stability of positive equilibrium, the existence of Hopf bifurcation and stability of bifurcating periodic solutions have been obtained in the absence of diffusion. We also study the spatially homogeneous and nonhomogeneous periodic solutions through all parameters of the system, which are spatially homogeneous. In order to verify our theoretical results, some numerical simulations are carried out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.