Abstract
The method of bifurcation of planar dynamical systems and method of numerical simulation of differential equations are employed to investigate the modified dispersive water wave equation. We obtain the parameter bifurcation sets that divide the parameter space into different regions which correspond to qualitatively different phase portraits. In different regions, different types of travelling solutions including solitary wave solutions, shock wave solutions and periodic wave solutions are simulated. Furthermore, with a generalized projective Riccati equation method, several new explicit exact solutions are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Analysis: Theory, Methods & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.