Abstract

We study a two-dimensional free boundary problem that models motility of eukaryotic cells on substrates. This problem consists of an elliptic equation describing the flow of cytoskeleton gel coupled with a convection-diffusion PDE for the density of myosin motors. The two key properties of this problem are (i) presence of the cross diffusion as in the classical Keller-Segel problem in chemotaxis and (ii) nonlinear nonlocal free boundary condition that involves curvature of the boundary. We establish the bifurcation of the traveling waves from a family of radially symmetric steady states. The traveling waves describe persistent motion without external cues or stimuli which is a signature of cell motility. We also prove existence of non-radial steady states. Existence of both traveling waves and non-radial steady states is established via Leray-Schauder degree theory applied to a Liouville-type equation (which is obtained via a reduction of the original system) in a free boundary setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.