Abstract

In order to understand the nature of surface patterns on silicon melts in industrial Czochralski furnaces, we conducted a series of unsteady three-dimensional numerical simulations of thermocapillary convections in thin silicon melt pools in an annular container. The pool is heated from the outer cylindrical wall and cooled at the inner wall. Bottom and top surfaces are adiabatic. The results show that the flow is steady and axisymmetric at small temperature difference in the radial direction. When the temperature difference exceeds a certain threshold value, hydrothermal waves appear and bifurcation occurs. In this case, the flow is unsteady and there are two possible groups of hydrothermal waves with different number of waves, which are characterized by spoke patterns traveling in the clockwise and counter-clockwise directions. Details of the flow and temperature disturbances are discussed and number of waves and traveling velocity of the hydrothermal wave are determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call