Abstract
Classical modes of one-dimensional (1D) detonation characterized by a simplified reaction model are reproduced by using a real chemical kinetics for the H2−O2 system with argon dilution. As Ar dilution is varied, the bifurcation points of pulsating instability are identified and a formed bifurcation diagram is compared with that obtained by the one-step reaction model. Eventually, the numerical results demonstrate that, for real detonations with detailed chemistry, the criterion of Ng et al. works well on prediction of the 1D detonation instability. Furthermore, the detonability limits are found respectively at low and high Ar dilutions. Above the high Ar dilution limit, detonations decays to the minimum level where long autoignition time and small heat release rate make reestablishment impossible for both 1D and 2D simulations. However, below the low Ar dilution limit, a 1D detonation cannot be sustained due to high instability, while the corresponding cellular detonation can propagate sustainably due to the role of transverse instability.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.