Abstract
The bifurcations of multiple limit cycles for a rotor-active magnetic bearings (AMB) system with the time-varying stiffness are considered in this paper. The governing nonlinear equation of motion is established for the rotor-AMB system with single-degree-of-freedom and parametric excitation. Using the method of multiple scales, the governing nonlinear equation of motion is first transformed to the averaged equation, which is in the form of a Z2-symmetric perturbed polynomial Hamiltonian system of degree 5. Then, the bifurcation theory of planar dynamical system and the method of detection function are utilized to analyze the bifurcations of multiple limit cycles of the averaged equation. Four groups of parametric controlling conditions are given to obtain the configurations of compound eyes. It is found that there exist respectively at least 17, 19, 21 and 22 limit cycles in the rotor-AMB system with the time-varying stiffness under the different controlling conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.