Abstract

This paper focuses on investigating the bifurcation of limit cycles and centers within a specific class of three-dimensional cubic systems possessing Z3-equivariant symmetry. By calculating the singular point values of the systems, we obtain a necessary condition for a singular point to be a center. Subsequently, the Darboux integral method is employed to demonstrate that this condition is also sufficient. Additionally, we demonstrate that the system can bifurcate 15 small amplitude limit cycles with a distribution pattern of 5−5−5 originating from the singular points after proper perturbation. This finding represents a novel contribution to the understanding of the number of limit cycles present in three-dimensional cubic systems with Z3-equivariant symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.