Abstract

A new method is proposed for analyzing the nonlinear dynamics and stability in lane changes on highways for tractor-semitrailer under rainy weather. Unlike most of the literature associated with a simulated linear dynamic model for tractor-semitrailers steady steering on dry road, a verified 5DOF mechanical model with nonlinear tire based on vehicle test was used in the lane change simulation on low adhesion coefficient road. According to Jacobian matrix eigenvalues of the vehicle model, bifurcations of steady steering and sinusoidal steering on highways under rainy weather were investigated using a numerical method. Furthermore, based on feedback linearization theory, taking the tractor yaw rate and joint angle as control objects, a feedback linearization controller combined with AFS and DYC was established. The numerical simulation results reveal that Hopf bifurcations are identified in steady and sinusoidal steering conditions, which translate into an oscillatory behavior leading to instability. And simulations of urgent step and single-lane change in high velocity show that the designed controller has good effects on eliminating bifurcations and improving lateral stability of tractor-semitrailer, during lane changing on highway under rainy weather. It is a valuable reference for safety design of tractor-semitrailers to improve the traffic safety with driver-vehicle-road closed-loop system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.