Abstract
This paper presents the bifurcation behaviors of a modified railway wheelset model to explore its instability mechanisms of hunting motion. Equivalent conicity data measured from China high-speed railway vehicle are used to modify the wheelset model. Firstly, the relationships between longitudinal stiffness, lateral stiffness, equivalent conicity and critical speed are taken into account by calculating the real parts of the eigenvalues of the Jacobian matrix and Hurwitz criterion for the corresponding linear model. Secondly, measured equivalent conicity data are fitted by a nonlinear function of the lateral displacement rather than are considered as a constant as usual. Nonlinear wheel–rail force function is used to describe the wheel–rail contact force. Based on these modifications, a modified railway wheelset model with nonlinear equivalent conicity and wheel–rail force is set up, and then, some instability mechanisms of China high-speed train vehicle are investigated based on Hopf bifurcation, fold (limit point) bifurcation of cycles, cusp bifurcation of cycles, Neimark–Sacker bifurcation of cycles and 1:1 resonance. In particular, fold bifurcation of cycles can produce a vast effect on the hunting motion of the modified wheelset model. One of the main reasons leading to hunting motion is due to the fold bifurcation structure of cycles, in which stable limit cycles and unstable limit cycles may coincide, and multiple nested limit cycles appear on a side of fold bifurcation curve of cycles. Unstable hunting motion mainly depends on the coexistence of equilibria and limit cycles and their positions; if the most outward limit cycle is stable, then the motion of high-speed vehicle should be safe in a reasonable range. Otherwise, if the initial values are chosen near the most outward unstable limit cycle or the system is perturbed by noises, the high-speed vehicle will take place unstable hunting motion and even lead to serious train derailment events. Therefore, in order to control hunting motions, it may be the easiest way in theory to guarantee the coexistence of the inner stable equilibrium and the most outward stable limit cycle in a wheelset system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.