Abstract

This paper presents a general analytical method to describe the center manifolds of collinear libration points in the restricted three-body problem (RTBP). It is well known that these center manifolds include Lissajous orbits, halo orbits, and quasi-halo orbits. Previous studies have traditionally treated these orbits separately by iteratively constructing high-order series solutions using the Lindstedt–Poincaré method. Instead of relying on resonance between their frequencies, this study identifies that halo and quasi-halo orbits arise due to intricate coupling interactions between in-plane and out-of-plane motions. To characterize this coupling effect, a novel concept, coupling coefficient η, is introduced in the RTBP, incorporating the coupling term ηΔx in the z-direction dynamics equation, where Δ represents a formal power series concerning the amplitudes. Subsequently, a uniform series solution for these orbits is constructed up to a specified order using the Lindstedt–Poincaré method. For any given paired in-plane and out-of-plane amplitudes, the coupling coefficient η is determined by the bifurcation equation Δ=0. When η=0, the proposed solution describes Lissajous orbits around libration points. As η transitions from zero to nonzero values, the solution describes quasi-halo orbits, which bifurcate from Lissajous orbits. Particularly, halo orbits bifurcate from planar Lyapunov orbits if the out-of-plane amplitude is zero. The proposed method provides a unified framework for understanding these intricate orbital behaviors in the RTBP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.