Abstract

Biological systems are often composed of various heterogeneous excitable units. It is a fascinating problem to investigate how this heterogeneity affects collective behavior of biological systems. In this paper, to understand the effect of the unit heterogeneity on the dynamical mechanism for the onset of collective oscillatory behavior, we analyze coupled heterogeneous excitable units. We clarify how spontaneous oscillations emerge depending on the degree of heterogeneity of the units. With an increase in the coupling strength, the system undergoes a saddle-node on invariant circle bifurcation and a heteroclinic bifurcation. Based on bifurcation theory, we reveal that the order of the two bifurcations plays key roles in the mechanism of the emergence of spontaneous oscillations. In addition, we analytically show that when the system has a symmetric property, a 5th-order pitchfork bifurcation occurs instead of the two bifurcations. We also find that spontaneous oscillations are more likely to occur when the sizes of subpopulations of excitable units with different parameters are more balanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.