Abstract

AbstractWe investigate the nonlinear dynamics of a two-dimensional film flowing down a finite heater, for a non-volatile and a volatile liquid. An oscillatory instability is predicted beyond a critical value of the Marangoni number using linear stability theory. Continuation along the Marangoni number using a nonlinear evolution equation is employed to trace the bifurcation diagram associated with the oscillatory instability. Hysteresis, a characteristic attribute of a subcritical Hopf bifurcation, is observed in a critical parametric region. The bifurcation is universally observed for both a non-volatile film and a volatile film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.