Abstract

The Multiple-Scale Method is applied directly to a one-dimensional continuous model to derive the equations governing the asymptotic dynamic of the system around a bifurcation point. The theory is illustrated with reference to a specific example, namely an internally constrained planar beam, equipped with a lumped viscoelastic device and loaded by a follower force. Nonlinear, integro-differential equations of motion are derived and expanded up to cubic terms in the transversal displacements and velocities of the beam. They are put in an operator form incorporating the mechanical boundary conditions, which account for the lumped viscoelastic device; the problem is thus governed by mixed algebraic-integro-differential operators. The linear stability of the trivial equilibrium is first studied. It reveals the existence of divergence, Hopf and double-zero bifurcations. The spectral properties of the linear operator and its adjoint are studied at the bifurcation points by obtaining closed-form expressions. Notably, the system is defective at the double-zero point, thus entailing the need to find a generalized eigenvector. A multiple-scale analysis is then performed for the three bifurcations and the relevant bifurcation equations are derived directly in their normal forms. Preliminary numerical results are illustrated for the double-zero bifurcation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.