Abstract
Setting up mathematical models to describe the interaction of chemical variables has been a hot issue in chemical and mathematical areas. Nevertheless, many mathematical models are only involved with the integer-order differential equation case. The fruits on fractional-order chemical models are very scarce. In this present work, on the basis of the previous studies, we set up a novel fractional-order delayed Oregonator model. Selecting the time delay as bifurcation parameter, we obtain novel delay-independent bifurcation conditions that guarantee the stability and the appearance of Hopf bifurcation for the fractional-order delayed Oregonator model. The study shows that time delay plays a vital role in controlling the stability and the appearance of Hopf bifurcation of the considered fractional-order delayed Oregonator model. In order to verify the rationality of theoretical results, computer simulations are carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: MATCH Communications in Mathematical and in Computer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.