Abstract
This manuscript investigates bifurcation, chaos, and stability analysis for a significant model in the research of shallow water waves, known as the second 3D fractional Wazwaz-Benjamin-Bona-Mahony (WBBM) model. The dynamical system for the above-mentioned nonlinear structure is obtained by employing the Galilean transformation to fulfill the research objectives. Subsequent analysis includes planar dynamic systems techniques to investigate bifurcations, chaos, and sensitivities within the model. Our findings reveal diverse features, including quasi-periodic, periodic, and chaotic motion within the governing nonlinear problem. Additionally, diverse soliton structures, like bright solitons, dark solitons, kink waves, and anti-kink waves, are thoroughly explored through visual illustrations. Interestingly, our results highlight the importance of chaos analysis in understanding complex system dynamics, prediction, and stability. Our techniques' efficiency, conciseness, and effectiveness advance our understanding of this model and suggest broader applications for exploring nonlinear systems. In addition to improving our understanding of shallow water nonlinear dynamics, including waveform features, bifurcation analysis, sensitivity, and stability, this study reveals insights into dynamic properties and wave patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.